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Computational Snapshot Multispectral Cameras 
Toward dynamic capture of the spectral world

M
ultispectral cameras collect image data with a greater 
number of spectral channels than traditional trichro-
matic sensors, thus providing spectral information at a 
higher level of detail. Such data are useful in various 

fields, such as remote sensing, materials science, biophotonics, 
and environmental monitoring. The massive scale of multi-
spectral data—at high resolutions in the spectral, spatial, and 

temporal dimensions—has long presented a major chal-
lenge in spectrometer design. With recent developments 

in sampling theory, this problem has become more 
manageable through use of undersampling and con-

strained reconstruction techniques. This article 
presents an overview of these state-of-the-art 
multispectral acquisition systems, with a particu-
lar focus on snapshot multispectral capture, from 
a signal processing perspective. We propose that 
undersampling-based multispectral cameras can 
be understood and compared by examining the 
efficiency of their sampling schemes, which we 
formulate as the spectral sensing coherence infor-

mation between their sensing matrices and spec-
trum-specific bases learned from a large-scale 

multispectral image database. We analyze existing 
snapshot multispectral cameras in this manner, and 

additionally discuss their optical performance in terms of 
light throughput and system complexity.

Introduction
The spectrum of a point in a scene is represented by the dis-
tribution of its electromagnetic radiation over a range of 
wavelengths. In conventional digital imaging devices, spectra 
are measured using three-channel red, green, blue (RGB) sen-
sors, which are designed to coincide with the tristimulus color 
measurements in the human visual system. However, a triple 
representation fails to capture the intricate details of natural 
scene spectra, which arise from the diversity and complexity 
of illumination and reflectance spectra in the real world. 
Since various material and object properties can be inferred 
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from detailed spectra, acquisition systems for precise spectral 
measurements can be effective tools for scientific research 
and engineering applications. For instance, spectral data can 
greatly facilitate cancer detection and diagnosis, since certain 
types of cancer cells have spectral characteristics that differ 
from those of normal cells [1]. Spectral data can also yield a 
rich set of features for image analysis. To take advantage of 
this, spectral capture technology has become widely used in 
military security, environmental monitoring, biological sci-
ences, medical diagnostics, scientific observation, and many 
other fields [1]–[7].

Studies in spectrum acquisition have been conducted for 
decades. Early spectrometers acquire only a single beam of 
light at a time, which significantly lim-
its their utility for measuring full scenes. 
Later work focused on efficient, high reso-
lution capture of both the spectral and spa-
tial dimensions. Recently, breakthroughs 
in temporal resolution have been achieved, 
which enable simultaneous acquisition of 
dynamic scenes in the spatial, temporal 
and spectral dimensions [8]–[10].

Traditional sampling methods [11]–[17], 
which are based on the Nyquist–Shannon 
sampling theorem, measure the signal at a 
certain constant sampling rate on each of 
the three dimensions. Each sample contains the signal infor-
mation at a single sampling location, time and wavelength. 
Sampling multispectral images in all three spatiospectral 
dimensions requires measurement at a massive scale, and thus 
making full-sampling schemes, such as those based on scan-
ning or interferometry, impractical in this scenario. That is 
because scanning a scene on either the spatial dimension or 
the spectral dimension entails a major sacrifice in the temporal 
sampling rate. As a result, a full-sampling approach can only 
be applied in practice on static or slow-moving scenes.

Capitalizing on recent advances in compressive sens-
ing theory, several techniques have been developed based 
on undersampling and constrained reconstruction, such as 
computed tomography imaging spectrometry (CTIS) [18] 
and coded aperture snapshot imaging (CASSI). Within 
the CASSI paradigm, there are single dispersive CASSI 
[19], dual dispersive CASSI [20], [21], its dual-coded three-
dimensional (3-D) version called the dual-coded snapshot 
imager (DCSI) [22], the colored 3-D version called the 
colored coded aperture spectral camera imager (CCASSI) 
[23]–[25], [47], prism-mask video imaging spectrometry 
(PMVIS) [26], [27], and single pixel camera spectrometry 
(SPCS) [28]. The aforementioned systems are all snapshot 
multispectral cameras, which means that the spectral data 
are measured in a single exposure (shot) on the camera sen-
sor. There are also other systems that capture multispectral 
data at video rates, but with more than one measurement 
per frame, by taking advantage of a rapidly varying optical 
element such as a spatial light modulator (SLM) or digital 
micromirror device (DMD), or by adding another camera 

into the optical path [30]–[32], [48]. These methods all cap-
ture fewer measurements than full-sampling schemes and 
reconstruct spectra from incomplete data with the aid of 
regularized reconstruction theory (e.g., utilizing knowledge 
of signal sparsity in some basis).

A diagram of several coded-aperture-based undersam-
pling snapshot schemes is shown in Figure 1. For better visu-
alization, the target 3-D spectral data cube ( , , )x y m  is shown 
using a two-dimensional (2-D) matrix representing both the 
spatial (x) domain and the spectral ( )m  domain. Such a high-
dimensional spectral data cube is not possible to capture in 
a single exposure using prevalent camera sensors. This has 
motivated the aforementioned undersampling systems that 

first capture a low-dimensional projection 
of the original high-dimensional spectral 
data. The projection process can be rep-
resented as a sensing matrix that projects 
the spectral and spatial information into a 
low-dimensional measurement, which is 
then computationally decoded. To multi-
plex the spectral and spatial information 
in a solvable manner, as shown in Figure 1, 
the coded aperture-based undersampling 
schemes usually manipulate the original 
data matrix in two ways: shearing and 
spatial modulation. These two transforms 

effectively reorganize the entries of the data matrix and are 
operable in practice (shearing by a prism or diffraction grat-
ing, and spatial modulation by an occlusion mask, spatial light 
modulator, or digital micromirror device).

Depending on their optical configurations and exploiting 
statistical properties of the spectrum data, the aforementioned 
methods employ different sampling strategies, which result in 
different sensing performance. In fact, the sampling scheme 
of a multispectral acquisition system has a significant effect 
on the reconstruction quality of spectra. On the other hand, 
in spectrometer design, sampling is also determined by the 
spectrometer optics and practical issues (e.g., calibration). 
With the optical design flexibility that is possible through the 
combination of optical elements (e.g., gratings and prisms) and 
computational elements (e.g., spatial light modulators or digital 
micromirror devices), we posit that the effectiveness and effi-
ciency of the sampling scheme should become the principal 
factor in the design of spectrometers.

Our intent in this article is to present a comprehensive dis-
cussion and analysis of existing coded aperture-based multi-
spectral snapshot systems, and link them to different sampling 
schemes from the signal processing perspective. For each of 
these coded aperture-based undersampling schemes, efficien-
cy is examined based on the spectral sensing coherence infor-
mation between its sensing matrix and sparse spectral bases 
constructed from a multispectral image data set. In addition, 
the optical properties of the spectrometers, i.e., light through-
put, noise tolerance, feasibility, and complexity, are discussed 
as well. We hope that these analyses and discussions not only 
provide readers with fresh insight on multispectral imaging, 
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but also serve as guidance for designing new multispectral 
cameras and conducting further study of existing methods.

Full-sampling systems
While mostly focusing on undersampling techniques for multi-
spectral capture, we also paint a fuller picture of multispectral 
imaging by first reviewing systems designed for full-sampling 
schemes. Conventional multispectral image acquisition sys-
tems are generally based on the Nyquist–Shannon sampling 
theorem, and thus they sample the signal at twice its maximal 
frequency. Therefore, due to the considerable amount of data, a 
sacrifice in either spatial or temporal resolution is needed for 
these cameras. Such a sacrifice may make full-sampling 
schemes less practical, thus motivating systems based on com-
pressive measurements.

In spite of the low latency of capture, full-sampling meth-
ods for multispectral image acquisition have become widely 
used in practice. We introduce the basic principles and analyze 
the performance of full-sampling multispectral acquisition 

systems in this section, including three conventional multi-
spectral cameras: filter-based spectrometers, scanning spec-
trometers, and interferometry-based methods.

Filter-based spectrometers record a sequence of images 
using a different color filter with each imaging exposure, 
which effectively samples a set of full spatial resolution images 
over the spectral range at the expense of temporal resolution. 
These spectrometers can be easily implemented using a rotat-
ing wheel of gel filters, or electronically tunable filters that are 
typically based on birefringent liquid crystal plates. The mea-
surement scheme of filter-based spectrometers can be viewed 
as spectral sampling over the temporal domain, with the spa-
tial resolution fully preserved. In such a system, it is important 
for the color filters to be fabricated with an antireflective coat-
ing, to minimize reductions in light throughput.

Instead of varying the filters temporally, scanning spectrom-
eters sweep a spectral sensing device over the scene, sacrificing 
temporal resolution to gain spatial resolution. Typically, scan-
ning is performed in a whiskbroom or a pushbroom manner. 
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Figure 1. Sensing matrices of existing sampling schemes for multispectral acquisition. The spectral and spatial data matrix is high dimensional, 
and current camera sensors can capture only a low-dimensional projection of the spectral data. The projection process can be regarded as a sensing 
matrix for the high-dimensional spectral data cube, and state-of-the-art computational multispectral imaging methods can be summarized as different 
sensing matrices.
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The whiskbroom design captures the spec-
trum of a single spatial location at each time 
instant, and thus requires substantial time to 
obtain an entire 3-D data cube. Rather than 
a pinhole aperture, the pushbroom design 
employs a slit aperture aligned with one 
of the two spatial dimensions (either x or 
y), and the spectrometer is translated along 
the other direction, providing much lower 
latency than the whiskbroom design. With a scanning-based 
sensor, the exposure time can be lengthened to increase sig-
nal intensity. However, scanning spectrometers involve more 
mechanical and calibration complexity in practice.

Interferometry techniques (also known as Fourier trans-
form spectral imaging), which are based on the principle of 
interference, project several subimages onto the image sen-
sor, each corresponding to a different color channel. Though 
a Fourier transform is required to reconstruct multispectral 
images from raw measurements, interferometry spectrom-
eters are considered to be full-sampling systems because the 
number of measurements is equal to the number of pixels 
in the final reconstructed image. These methods sacrifice 
spatial resolution but avoid spatial discrepancies by directly 
measuring the spectra of scene points. For such systems, 
their complexity (with multiple imaging lenses) and precision 
requirements (on the order of nanometers) make them diffi-
cult to build and calibrate.

Undersampling systems
While many methods have been used to construct spectral 
imagers, this article specifically compares coded aperture-
based undersampling designs. The multispectral image infor-
mation of a dynamic scene spans three domains—spatial, 
spectral and temporal—presenting an immense amount of 
data. Just a single second of uncompressed multispectral video 

with a typical 60 spectral bands and only 
one mega-pixel of spatial resolution is close 
to two gigabytes. Measuring this amount of 
data even with short exposure times is infea-
sible with full-sampling schemes. In captur-
ing multispectral information at video rates, 
significant undersampling is thus required. 
Several coded-aperture-based systems have 
been proposed for multispectral snapshot 

imaging or video capture. In limiting ourselves to such systems, 
it is helpful to explain why they are of particular interest to 
compressive spectral imaging. All spectral imagers take mea-
surements of the form

 ( , ) ,( ) ,g f x h x dxdi i mm m= #  (1)

where ( , )f x m  is the unknown spectral image and ( , )xhi m  is the 
instrument function for the ith measurement. Such measure-
ments may be point-wise, as in pushbroom systems for which 

( , )h x xi i id m m= - -  ( ( )$d  is the Dirac delta function), or multi-
plexed, as in coded aperture or tomographic systems. Point-wise 
measurements, however, lack forward model coherence proper-
ties consistent with compressive measurement. For compressive 
measurement one would like to measure weighted groups of 
unrelated pixels. Representing the spectral data cube as a 2-D 
space-wavelength structure, CTIS-style systems integrate along 
lines through the data cube as illustrated in Figure 2.

In the ideal case, one might instead integrate groups of pix-
els randomly selected from the data cube. Fully random strate-
gies have been implemented for 2-D imaging using single pixel 
cameras [50]. For tomographic imagers, such as spectral cam-
eras, however, no simple physical mechanism exists for inte-
grating random and independent voxel groups.

The most common form of spectral imager is, of course, the 
RGB camera, which uses color filter arrays to periodically iso-
late different color planes. The ideal spectral imager might be 
similar to an RGB camera but with more diverse and complex 
spectral filters. Several groups have indeed proposed or imple-
mented spectral imagers using filter arrays [51], [52]. Complex 
spectral filters are constructed from interference devices. Pix-
elated interference filters with complex spectral structure are, 
however, both expensive and difficult to fabricate. In using 
coded apertures, we find physical advantages in the use of spa-
tial modulation to measure spectral information analogous to 
the use of spatial delay lines to measure time. Femtosecond 
pulses are commonly measured using piezoelectric positioning 
systems with nanometer scale-resolution [53]. Native femto-
second time measurement devices do not exist. Similarly, it is 
much easier to use a coded aperture with micron scale features 
to encode a pixelated spectral filter with 10–100 features than 
to create a similarly complex interference filter. To understand 
the basic resolution of a coded aperture system, we return to 
the 2-D data cube discussed previously. As illustrated in Fig-
ure 3, we consider a coded aperture with code feature size 
3 . A spectral imaging system observes the unknown scene 
modulated by this code with the spectral planes dispersed by a 
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Figure 2. Spectral data measurement in the CTIS system.
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grating or prism at the rate ( / )dx dm . A sim-
ple single disperser coded aperture system 
integrates along the wavelength dimension 
on detection, basically taking tomographic 
projections along this dimension. Due to 
the coded aperture, however, features along 
this dimension are modulated to improve 
the coherence of the forward model rela-
tive to simple tomographic projections. The 
rate of modulation is easily determined by 
considering the number of independent 
code features observed at each detection 
point. A given code feature is shifted spa-
tially by ( / )dx dmC , where C  is the sepa-
ration between the shortest and longest 
wavelength observed. Therefore, integrating 
along a single wavelength channel, the number of independent 
wavelength coding elements observed is ( / ) .N dx dT mC=  The 
spectral resolution is / / .N d dxT mC =  For a grating of period 
L  imaged with a lens of focal length /, ( ) ( / ) .dxF d L Fm =  With 
L 3=  microns and  F 3=  cm, for example, a code feature 
of size 10 microns yields a spectral resolution of 10 nm, cor-
responding to 30–40 spectral features over the visible range. 
Better spectral resolution can be obtained with faster gratings 
or longer focal lengths, but a multiplexing level of 30–40 is 
already fairly aggressive for snapshot imaging. Multiform 
integration methods will likely be necessary for more heavily 
multiplexed systems.

We see, therefore, that coded apertures present a simple and 
straightforward mechanism for complex spectral filter imple-
mentation. In addition, depending on the implementation, they 
have reasonably local kernels that allow spatially separable 
data cube estimation.

Even within the family of coded aperture spectral imag-
ers, numerous design choices may be considered for code 
implementation, dispersive elements, and sensing. Since we 
cannot comprehensively consider all design choices, here 
we focus on comparing the coherence of the forward model 
for several model systems based upon compressive coded 
aperture designs proposed and demonstrated over the past 
decade. We specifically do not consider implications of static 
codes implemented on slides versus dynamic codes imple-
mented using spatial light modulators. While spatial light 
modulators suffer scatter and numerical aperture limitations 
not found with static codes, we hope that the reader will find 
our comparisons without detailed physical implementations 
sufficiently compelling to postpone full consideration of 
practical issues.

The coded aperture-based undersampling systems employ 
different sampling strategies according to their optical con-
figurations and exploit statistical properties of multispectral 
data, which leads to different sensing performance in terms of 
spectral reconstruction quality. Figure 4 displays diagrams of 
four undersampling multispectral cameras. It is worth noting 
that to facilitate comparison, the diagrams of the systems are 
drawn not according to the physical configurations proposed 

in the original papers [19]–[27], but rather 
so that their light paths are equivalent. For 
DD-CASSI, the original implementation in 
[20] has two dispersers to realize the dis-
persion and pixel-wise focusing (i.e., all the 
spectra of a single point passed through the 
mask focus on a single pixel), but its dia-
gram in Figure 4 has only one disperser 
(grating) to achieve the same focusing 
by just tuning the location of the spatial 
modulator (mask) and the image sensor. By 
representing systems with different kinds 
of modulation (i.e., point-wise coding and 
sheared coding) and imaging (pixel-wise 
focusing and dispersed imaging) using sim-
ilar optical paths in Figure 4, the intrinsic 

differences between the four systems are revealed. As shown 
in Figure 4, the PMVIS, SD-CASSI, and DD-CASSI systems 
only use a single mask to modulate the input light. The main 
difference between them is the placement of the mask. Both 
PMVIS and SD-CASSI place the mask on the imaging plane, 
leading to point-wise coding (i.e., all the spectra of a single 
point are either passed through or blocked by the mask), while 
the DD-CASSI places the mask in front of the image plane, 
which leads to a spectrally sheared coding (i.e., the 3-D code 
is generated by stacking the same 2-D code with different 
offsets). In contrast, the sensor of DD-CASSI is put on the 
image plane to achieve pixel-wise focusing, while PMVIS and 
SD-CASSI place the sensor behind the imaging plane, which 
leads to dispersed imaging (i.e., spectra of a single point dis-
persed to a set of pixels). As for 3-D-CASSI, two masks are 
utilized to achieve both the spatial and spectral modulation 
simultaneously, and the sensor is put on the focus plane to 
ensure pixel-wise focusing.

Prism-mask video imaging spectrometry
PMVIS [26], [27] straightforwardly acquires the spectra of 
scene points with the aid of a prism and utilizes a mask with 
uniformly distributed holes that prevent overlaps of the 
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dispersed spectra on the sensor, as shown in Figure 4(a). The 
spectral values of the sample points are measured directly 
without any spectral modulation, and there exists a known 
correspondence between spectral bands and sensor plane 
locations. Each of the measurements represents a certain 
spectral intensity value of its corresponding scene point. As 
shown in Figure 5(a), this system sacrifices spatial resolution 
to achieve high spectral resolution. Cao et al. [27], [28] 
extended this idea with a hybrid PMVIS scheme in which a 
high spatial resolution RGB image is simultaneously acquired 
with each multispectral snapshot. Through a spatial interpola-
tion within the spectral frame that is guided by the high reso-
lution RGB image, a final result is computed with high 
resolution in both the spatial and spectral dimensions.

Single dispersive coded aperture snapshot imager
According to compressive sensing theory [54], if a signal has 
a low-dimensional representation (e.g., it can be represented 
as a sparse combination of orthonormal bases, like wavelets), 
then it can be reconstructed from a small set of measure-
ments. With an appropriate sampling scheme, the samples 
needed to reconstruct a signal can be fewer than those speci-
fied by the Nyquist–Shannon limit. Based on this concept, 
various undersampling systems have been developed to 
reconstruct entire spectra from fewer measurements.

Wagadarikar et al. proposed the CASSI system using a single 
disperser [19], which we will refer to as SD-CASSI. The spec-
tral data cube is modulated by a coded mask and dispersion, as 
shown in Figure 4(b). Light rays of different wavelengths are 
modulated by an aperture code and then are offset differently by 
a dispersive element, which results in a coded and sheared 3-D 
cube as illustrated in Figure 4 before projection onto the CCD 
sensor. The imager captures a 2-D projection of the coded and 
sheared cube as shown in Figure 4. After the undersampling and 
spectrally multiplexed capture, the complete data cube is recon-
structed based on the prior that spatial-spectral information is 
sparse in the wavelet domain.

The CASSI system implements measurement matrices of a 
specific structure, i.e., a replicated and slanted 2-D code along 
the spectral dimension, illustrated as the SD-CASSI projection 
in Figure 5(b). The mathematical formulation of the 3-D code 
can be expressed as

 ( , , ) ( , ) ( )x y x s y reshape TCC C D2 $Tm m= - = , (2)

where ( , )x y  and m  are the spatial and spectral indices, C D2  is a 
randomly generated 2-D spatial coding pattern, sT  is the offset 
of each channel caused by dispersion, C  is the column vector 
form of the unsheared modulation code, T  is the shearing opera-
tion matrix, and reshape $^ h is the reshape function to transform 
the column vector to the original 3-D data cube.

The image is modulated before the dispersive element, and 
then the disperser shears the modulated image. Thus the mea-
surements can be modeled as

 ,T C Svector reshape diagM SU= =
m

/c ^ ^ mh h  (3)
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Figure 5. An illustration of voxel sensing schemes of four types of undersampling multispectral cameras. The sampling schemes of the (a) PMVIS,  
(b) SD-CASSI, (c) DD-CASSI, and (d) 3-D-CASSI systems.

where M  is the column vector form of the measured values, 
U  is the sensing matrix, S is the column vector form of the 
spectral data cube, ()diag  is the diagonal operator to trans-
form a vector to a same order square matrix 
with the elements of the input on the diago-
nal, ()reshape  is the reshaping operator 
to transform the column vector to the 3-D 
data cube, and ()vector  is the vectorizing 
operator for transforming the 2-D matrix 
to a column vector. Mathematically, the 
operation vector reshapeRm  can be regard-
ed as a down-sampling operator, and each 
element of the output M  is the summation 
of a set of certain elements of the input 
vector diagT C S^ h . In other words, the combined operator 
vector reshapeRm  can be represented by a single short matrix. 
Then, the sensing matrix of SD-CASSI can be represented by

 diagT CU R= ^ h, (4)

where R denotes the short matrix form of the combined sum-
mation operator vector reshapeRm . According to (4), the imag-
ing procedure represented by the summation matrix R just 
follows the shearing operation T , which implies dispersed 
imaging, i.e., the spectra of a single point is dispersed to a set 
of pixels. The coding matrix ( )diag C  manipulates the original 
spectral data cube directly, which corresponds to point-wise 
coding (i.e., all the spectra of a single point are either passed 
through or blocked by the mask).

Dual dispersive coded aperture snapshot imager
Since the basic CASSI system forms a sheared 3-D spectral 
data cube, the observed snapshot is blurred by dispersion. To 
overcome this effect, Gehm et al. [20] proposed a dual-dis-
perser architecture (DD-CASSI) in which two dispersers are 
symmetrically placed on the two sides of the coded aperture 
to produce an unsheared spectral cube with replicated slant-
ed code. Lin et al. [21] proposed a single disperser (grating) 
system called spatial-spectral encoded compressive spectral 
imager (SSCSI) to realize the same function as shown 

in Figure 4(b) but with less calibration difficulty than the 
dual-disperser CASSI. Although these two systems adopt a 
similar code, they employ different sampling and recon-

struction methods. A recursive offset code 
is applied by Gehm et al. [20] to achieve 
fast block-wise processing, while a ran-
dom and nonuniform code as well as a 
 dictionary-based reconstruction algorithm 
are employed by Lin et al. [21] to obtain 
high-quality performance.

DD-CASSI has exactly the same cod-
ing space as the SD-CASSI system, but 
the modulated 3-D spectral data cube is 
not sheared (i.e., it is sheared back after 

modulation), as shown in Figure 5(c). Thus, the measurement 
matrix becomes

 .diag diagT C T TCTU R R= =^ ^h h  (5)

According to (5), the transpose TT  is the inverse shearing 
matrix, which is used to unshear the sheared cube. As for the 
second term on the right of (5), the diagonal coding matrix 
diag TC^ h modulates the original spectral data cube, which 
implies spectrally sheared coding (i.e.,the 3-D code is generated 
by stacking the same 2-D code with different offsets). In this 
case, the shearing matrix T only shears the 3-D code, and the 
spectral data is not affected. Meanwhile, the summation matrix 
R integrates the coded data cube along the spectral dimension, 
which represents the pixel-wise focusing, i.e., all the passed 
spectra of a single point are focused on a single pixel.

Spatial-spectral coded compressive spectral imager
The feasible codes for both the basic CASSI and the nonspatial-
ly modulated imager are limited by their physical modulation 
capabilities. Theoretically, 3-D-CASSI, which encodes the spa-
tial-spectral data cube randomly, can achieve more feasible 
codes and higher performance, as shown in Figure 4(b). Howev-
er, the physical implementation of 3-D-CASSI is not trivial.

To approximate the 3-D modulation in spatial-spectral data 
cube, two coded aperture-based systems, i.e., the color-coded 

DD-CASSi has exactly the 
same coding space as the 
SD-CASSi system, but the 
modulated 3-D spectral 
data cube is not sheared 
(i.e., it is sheared back 
after modulation).
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aperture spectral camera imager (also known 
as CCASSI) and DCSI are proposed. Cor-
rea et al. [23], [47], Arguello et al. [24], and 
Rueda et al. [25] utilize the RGB colored 
sensor as a spatial-spectral modulator to 
achieve the specific dual coded (in spatial 
and spectral dimensions) compressive spec-
tral imager (CCASSI). By combing the sep-
arable codes of all the spectral channels, the 
CCASSI can achieve more complex modu-
lation than SD-CASSI and DD-CASSI. 
Similarly, Lin et al. [22] proposed a system 
that consists of two controllable modula-
tors (e.g., digital mirror devices) on both the 
spectral and spatial plane, and introduce the 
dynamic modulation, i.e., changing the codes of the spectral 
and spatial planes during the exposure time, to enable more 
flexible modulation. Mathematically, the composited 3-D spec-
tral code , ,  x yCCCASSI m^ h of CCASSI and , ,  x yCDCSI m^ h of 
DCSI can be represented by the sum of a set of separable codes:
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where ,x y^ h and m  are the spatial and spectral indices, c  and t  
index the spectral channels and time slices respectively, Ct

spatial  
and Ct

spectral  are the spatial and spectral codes of the CASSI 
system for channel c , and Ct

spatial  and Ct
spectral  are the spatial 

and spectral codes of the DCSI system at time t. Since both the 
spectral data cube and the coding pattern are not sheared in 
this system, the measurement matrix is

 diag CU R= ^ h. (7)

The ideal 3-D-CASSI can in principle produce any 3-D code, as 
shown in Figure 5(d). Both CCASSI and DCSI are the approxi-
mate implementations of the ideal 3-D-CASSI. According to 
(7), there is no shearing matrix in the sensing matrix, which 
implies pixel-wise focus and nonrestricted coding [as in (6)] 
on both the spatial and spectral dimensions. Thus, 3-D-CASSI 

provides a larger feasible code space than 
the SD-CASSI and DD-CASSI systems.

All of the coded aperture-based systems 
capture images with the CCD sensor placed 
on the image plane. The sensing step cor-
responds to integrating the 3-D spectral data 
cube along the spectral dimension, yield-
ing snapshots that are blurred from disper-
sion (SD-CASSI) or not (DD-CASSI and 
3-D-CASSI) with modulated patterns. For 
the PMVIS system, the mask is placed on the 
image plane to obtain uniform sampling, and 
the sensor is located beyond the image plane 
by a certain distance to ensure that the dis-
persive spectral bands of the sampling points 

fill the sensor without overlapping one another. Figure 6 exhib-
its snapshot measurements on the sensor for the four systems.

Sensing matrix and spectral sensing coherence
To compare the multispectral sensing ability of these unders-
ampling systems, we analyze their sampling efficiency. Con-
sider the following theorem [2], [34], [35].

For a given signal f Rn! , suppose that its coefficient 
sequence x in the orthonormal basis W  is S-parse, i.e., the 
coefficient sequence x has S nonzero elements. Then with m 
randomly selected measurements in the U  (sensing matrix) 
domain, the signal f can be exactly reconstructed through L1 
minimization with overwhelming probability if

 , ,cm   S log n2$ n U W^ h  (8)

where , ,maxn  
,k j n

k j
1

n { }U W =
# #

^ h  is the coherence between

the sensing matrix U  and sparse domain bases W , and c  is a 
known positive constant.

According to this theorem, a smaller coherence ,n U W^ h 
indicates that fewer measurements are needed for complete recon-
struction, and therefore the sensing system has higher sampling 
efficiency. In general, a randomly generated measurement matrix 
would be effective for most signals. However, for a specific task 
like multispectral imaging where signals exhibit commonalities 
that allow representation with a sparse basis or dictionary, the mea-
surement matrix U can be designed to achieve better performance.

(a) (b) (c) (d)

Figure 6. Measurement snapshots of the (a) PMVIS, (b) SD-CASSI, (c) DD-CASSI, and (d) 3-D-CASSI systems.  

For the four types of 
undersampling systems, 
we examine their sampling 
efficiency based on 
the spectral sensing 
coherence information of 
their sensing matrices, 
and then evaluate their 
reconstruction accuracy 
on a diverse multispectral 
database containing 
images of various scenes.
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In this article, we measure the quality of a sensing matrix 
as its spectral sensing coherence information with sparse 
domain bases: , Idef

m
T T

F. < <U W W U UW-^ h , where I  is the 
identity matrix. Minimization of ,m. U W^ h imposes the con-
dition that the Gram matrix T TW U UW  be as close as pos-
sible to the identity matrix, which provides a good sensing 
matrix as well.

Evaluation of undersampling systems
For the four types of undersampling systems, we examine 
their sampling efficiency based on the spectral sensing coher-
ence information of their sensing matrices, and then evaluate 
their reconstruction accuracy on a diverse multispectral data-
base containing images of various scenes—including indoor 
scenes, outdoor scenes, various materials and different illu-
minations—from four online data sets [40]–[43]. A few exam-
ple images are shown in Figure 7.

Computation of spectral sensing coherence information 
and image reconstruction
The spectral sensing coherence information is computed 
with respect to a domain basis in which the signals can be 

sparsely represented. From the multispectral image data-
base, we learn two kinds of bases W  in which multispectral 
images have a sparse representation. The first is from princi-
pal components analysis (PCA) [45], which is applied to 
derive an orthonormal bases. The second is from the K-SVD 
algorithm [39], which is used to obtain an overcomplete dic-
tionary. The bases represent the specific structural charac-
teristics of the multispectral images and video frames, and 
thus are suitable for computing spectral sensing coherence 
information ,m. U W^ h and analyzing the sampling efficien-
cy of the undersampling schemes for multispectral acquisi-
tion systems.

In computing the PCA bases and the overcomplete diction-
ary, we use 100,000 multispectral patches of size 10 10 29# #  
pixels (horizontal # vertical # spectral) that are randomly 
sampled from the database. The size of each basis element is 
thus 10 10 29# #  as well. Since the PCA bases are orthonor-
mal and complete, it has a size of exactly 2,900. For K-SVD, 
6,200 atoms are learned as a sparse representation of the natu-
ral multispectral images.

We also synthetically test the reconstruction accuracy of 
the four undersampling multispectral imaging systems on the 

420 nm 450 nm 480 nm 510 nm 540 nm 570 nm 600 nm 630 nm 660 nm 690 nm

Figure 7. Six example images from the multispectral database, including indoor and outdoor scenes, various materials, and different illumination. Ten of 
the 29 spectral channels (from 420 nm to 700 nm, at 10 nm intervals) are shown. The corresponding RGB images are displayed in the top row. 
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database images. The inputs of the four systems are generated 
by sampling the multispectral images according to the corre-
sponding sensing matrices described in the section “Unders-
ampling Systems.” Image reconstruction is performed using a 
widely employed algorithm—the alternating direction method 
of multipliers (ADMM) [46]—except for PMVIS which simply 
employs linear interpolation (as it cannot be solved by ADMM 
directly because of its special sampling scheme). ADMM is 
widely used in image reconstruction and has shown superior 
performance. It is worth noting that the choice of the algorithm 
may affect the reconstruction accuracy, but the ranking of the 
results does not change.

In testing PMVIS, we use an image down-sampling rate 
of 0.3%, as is the case in the prototype camera [27]. Theoreti-
cally, in PMVIS systems, a minimal down-sampling rate of 
1/X (where X is the number of spectral channels) is needed 
to prevent overlaps between the spectra of different samples. 
The current prototypes are not well calibrated, so the down-
sampling rate may potentially be improved in the future.

Table 1 presents the spectral sensing coherence informa-
tion values computed between the sensing matrices of the 
four types of the undersampling systems and the three kinds 
of bases. Note that since hybrid PMVIS [30], [31] and hybrid 
CASSI [32] each obtain two snapshots, they are omitted in this 
analysis for an even comparison. Multiple snapshot systems 
are discussed in the section “Evaluation of Undersampling 
Systems.” For the coded aperture-based systems, binary codes 
randomly generated by the Bernoulli distribution, with the 
same probability ( ) . ,p x 1 0 5= =  are applied.

Specifically, the codes of SD-CASSI and DD-CASSI are 
derived by shifting and stacking the randomly generated 2-D 
patterns. As for 3-D-CASSI, the code is generated directly in 
3-D space. Both the K-SVD and PCA bases are learned from 
the database.

The 3-D-CASSI system has the most complex modulation 
and achieves the best spectral sensing coherence informa-
tion on the overcomplete dictionary learned by the K-SVD 
algorithm. However, for the PCA bases, DD-CASSI provides 
the best spectral sensing coherence information. For both of 
the bases, the coherences of DD-CASSI and 3-D-CASSI are 
very close, which indicates comparable quality of their sens-
ing matrices. It is shown in Figure 7 that DD-CASSI and 
3-D-CASSI also perform comparably on hyperspectral image 
reconstruction accuracy, which is consistent with the theorem 
discussed in the section “Understampling Systems.”

Aside from DD-CASSI and 3-D-CASSI, the coherence val-
ues of the other systems have a consistent ranking on both the 
PCA and K-SVD bases, which suggests that the relative qual-
ity of sensing matrices is not greatly affected by the bases, if 
they represent the sparse structure of the data well. This is also 
indicated by the reconstruction results in Figure 8.

The reconstruction performance of the four undersampling 
systems is displayed for the 610-nm channel of an example 
image in Figure 9. The result of PMVIS exhibits blocking 
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Figure 8. PSNR comparison for image reconstruction with the four types 
of undersampling systems on a set of 50 multispectral images. Crosses 
of different colors mark the average PSNR for the different methods. The 
PNSR value for each individual multispectral image is also plotted, as blue 
dots, to illustrate the statistical distribution of the reconstruction accuracy. 
Except for PMVIS in which linear interpolation is used for reconstruction, 
we use the ADMM [46] to compute the reconstruction results.

(a) (b) (c) (d)

seconds

Figure 9. A comparison of reconstructed results for the four undersampling systems. All of the results are shown at the 610-nm channel. (a) PMVIS 
PSNR = 16.6845 db, (b) SD-CASSI PSNR = 18.0859 db, (c) DD-CASSI PSNR = 29.8178 db, and (d) 3-D-CASSI PSNR = 32.5659 db.  

Table 1. The spectral sensing coherence information between the 
sensing matrices of different systems and the learned bases.

SD-CASSI DD-CASSI 3-D-CASSI PMVIS

K-SVD 0.7920 0.7787 0.7737 0.8148

PCA 0.7048 0.6432 0.6663 0.7251



105IEEE SIgnal ProcESSIng MagazInE   |   September 2016   |

artifacts due to its low sampling rate in the 
spatial domain. The results for the other 
three coded aperture systems are of much 
higher quality. 3-D-CASSI produces par-
ticularly good results in this example.

It is worth noting that the random code 
may not be optimal for specific data such as 
multispectral images, which exhibit certain 
characteristics and strong redundancy. In 
regard to this, the feasible space of coding 
patterns for the coded aperture-based sys-
tems is constrained by the light paths of the 
systems. With a larger feasible domain, there is greater potential 
for a system to achieve higher performance. Since 3-D-CASSI, 
whose coding space completely encompasses those of the other 
three systems, does not exhibit much superiority over the other 
systems in our experiments, we believe that a random code is far 
from optimal in the multispectral imaging scenario.

Analysis of light throughput and system complexity
Besides the sensing matrix, the light throughput and calibra-
tion error also affect the reconstruction accuracy. For discus-
sion of these factors and practical system complexity, we list 
the light throughput and the number of optical elements in 
Table 2. For the PMVIS system, its light throughput is deter-
mined by its down-sampling rate, which is the reciprocal of 
the number of spectral channels X . For the typical multi-
spectral imaging scenario, with 30 or more spectral chan-
nels, the light throughput loss of PMVIS is relatively large. 
Both SD-CASSI and DD-CASSI have a light throughput of 
0.5, while that of 3-D-CASSI is 0.25 because of its two mod-
ulators. With regard to system complexity and calibration 
difficulty, PMVIS and SD-CASSI are relatively simple and 
easy to calibrate because of their smaller number of optical 
elements and simpler light paths. Particularly, PMVIS is 
much more robust to calibration errors (e.g., slight shifts or 
rotations of the coded aperture) because its reconstruction 
algorithm is based on simple interpolation, which makes the 
system highly practical. The number of optical elements also 
has a strong influence on calibration and light throughput, 
and thus it affects the signal-to-noise ratio of the captured 
multispectral images. Although PMVIS and SD-CASSI have 
lower reconstruction accuracy on synthetic data as shown in 
Figure 8, this gap is narrowed by taking their practical bene-
fits into consideration.

As shown in Figure 10, it is clear that when the sensing noise 
increases, the performance gap between DD-CASSI/3-D-CASSI 

and SD-CASSI/PMVIS decreases rapidly. 
The reconstruction results of all the systems 
are degraded with the increase of sensing 
noise. However, with greater system com-
plexity there is more degradation in perfor-
mance. Considering the high complexity of 
DD-CASSI and 3-D-CASSI, which leads to 
lower light throughput and larger calibra-
tion errors, the advantages of the complex 
coded aperture systems may be counter-
acted by the effect of sensing noise. Thus, 
further investigation is needed for reducing 

the light path  complexity of coded aperture-based spectral 
imaging systems and improving the noisy tolerance of the 
reconstruction algorithms.

Discussions and future directions

Video-rate multispectral cameras  
with multiple snapshots
We have focused on multispectral video imagers with single 
snapshot measurements thus far, but there exist other sys-
tems [2], [30]–[32], [48] that acquire two or more snapshot 
measurements to recover the spectral information with high-
er accuracy while still at video rates. These systems can be 
also used for multispectral capture of dynamic scenes.

Multiple snapshots have been acquired in two ways. One 
is by adding extra cameras into the optical path. Figure 11 
shows one design for such an implementation, where the 
incoming light rays are first directed along two separate 
paths by a beam splitter, essentially making two copies of the 
light rays, each with a lower light intensity. One of the paths 
enters the optical configuration of an undersampling system 
(e.g., PMVIS or CASSI), while the other light path may lead 
to an RGB or grayscale camera to record a high spatial res-
olution image of the scene. This hybrid camera design has 
been implemented based on PMVIS [30], [31] and CASSI 

Figure 10. Noise tolerance curves of the four kinds of spectral imaging 
systems. (The image intensity is normalized to 0~1.)
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Table 2. Typical parameters for the four types of undersampling systems.

SD-CASSI DD-CASSI 3-D-CASSI PMVIS

Light throughput 0.5 0.5 0.25 1
X

Number of  optical 
elements    6 9 8 6

With regard to system 
complexity and calibration 
difficulty, PMViS and 
SD-CASSi are relatively 
simple and easy to 
calibrate because of their 
smaller number of optical 
elements and simpler  
light paths.
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[32], [48]. We also conducted spectral reconstruction experi-
ments using this hybrid design by adding another full spatial 
resolution image as part of the input (RGB for PMVIS, and 
gray scale for CASSI). As for the PMVIS system, two kinds 
of reconstruction algorithms, i.e., a simple 
bilateral propagation-based method [30] and 
a more complex learning-based method [49], 
are applied.

The results in Table 3, which are derived by 
averaging the results on the aforementioned 
spectral image database, show that the recon-
struction accuracy is increased by about 8 dB 
and 5 dB on average for PMVIS and CASSI, 
respectively. This tremendous gain in signal 
recovery demonstrates the effectiveness of a 
hybrid camera design that includes an addi-
tional basic sensor. In addition, the complex 
learning-based algorithm achieves about 8 dB 
improvement over the simple bilateral propa-
gation method for the PMVIS system, which 
shows the great potential of improving exist-
ing reconstruction algorithms.

The other method for acquiring extra snapshot measure-
ments is to use high-frequency optical elements and sensors 
that allow multiple snapshots to be captured for each mul-
tispectral video frame. Spatial light modulators or digital 
micro-mirror devices operating at 120 Hz or above can be 
used for this purpose in conjunction with high-speed camera 
sensors, all of which have become increasingly affordable in 
recent years. Systems based on this design have been success-
fully built for multiple snapshot multispectral video capture 
[2], [29]. Significant gains in reconstruction accuracy (about 
5 dB) have been reported in comparison to the single snapshot 

CASSI system in [2]. As a result, in practice, by adding an 
extra sensor or using an ultrafast coded aperture, greater accu-
racy in multispectral acquisition can be obtained with some 
increase in system cost.

Advanced theory in reconstruction from  
undersampled signals
The use of random projections in compressed measurements 
was originally motivated by the idea that many signals of 
interest may be represented sparsely in an orthonormal basis, 
such as the wavelet transform. However, sparsity represents 
only one class of signal model, and other models may lead to 
other forms of compressive measurement that may perform 
better than random projections. For example, it has been 
demonstrated that many signals of interest may be repre-
sented in terms of a union of low-dimensional linear sub-
spaces [35], [37], [44], [48]. From a statistical or signal 
processing perspective, such a model may be represented as 

a Gaussian mixture model (GMM), in 
which the covariance matrix of each 
mixture component is low rank [36]–
[38]. Recent theory has shown that good 
measurement matrices correspond to 
projections that are aligned with the 
signal space [36], [37]. There is already 
evidence to demonstrate that such a sig-
nal model, which may be learned based 
on the data [38], is well suited to the 
multispectral data of interest. This 
model will greatly facilitate the mea-
surement design of novel multispectral 
video cameras.

With the advances in signal process-
ing theory and algorithms and the in  -
creasing demand for high-resolution 
multispectral images/videos, unders-

ampling schemes for multispectral image acquisition have 
become a hot topic in computational photography and sig-
nal processing. A number of undersampling-based acquisi-
tion systems have been proposed, but there had been little 
analysis of their relative effectiveness. In this article, we 
have examined existing multispectral video systems based 
on their sampling efficiency and optical performance, from 
a signal processing perspective. We introduced the spectral 
sensing coherence information of the sensing matrix and 
bases learned from multispectral data as a metric for com-
paring the sampling efficiency of different systems. From 

Scene

Incoming
Light Ray

Beam
Splitter

Mirror

Extra Camera Undersampling
System

Hybrid Camera
System

Figure 11. A hybrid camera design for multiple snapshot measurements.

Table 3. PSNR comparison of three multisnapshot systems.

Hybrid PMVIS  
(+ Extra Camera)

SD-CASSI
(Measure Twice)

Hybrid CASSI 
(+ Extra Camera)Systems

Simple 
Algorithm 

Complex 
Algorithm

PSNR (DB) 25.86 33.19 28.04 32.10

With the advances in 
signal processing theory 
and algorithms and 
the increasing demand 
for high-resolution 
multispectral images/
videos, undersampling 
schemes for multispectral 
image acquisition 
have become a hot 
topic in computational 
photography and  
signal processing.
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these analyses, readers may be inspired to design or develop 
better sampling schemes for multispectral sensing.
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